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Abstract—A general classification of two-phase flows and a number of possible ways to formulate
two-fluid models are discussed. The two-fluid model is adopted, and a general procedure to develop such
a model is presented. The local instantaneous equations of mass and momentum are derived together with
the corresponding jump conditions. Volume, time and ensemble averaging procedures are discussed, and
averaged equations and jump conditions are derived using a general averaging operator. A Reynolds
decomposition and weighting procedure is applied to obtain the final equations. The equations necessary
to close the system, so-called closure laws, are discussed. The mechanisms contributing to the viscosity
of both phases and mixture viscosity models are presented. The particle pressure is discussed, and some
simple models based on the modulus of elasticity concept are given. The interfacial momentum transfer
term is discussed in detail, and a study of common models of the drag function is presented. A discussion
of turbulence models for the gas and particulate phases is included. A summary and critical assessment
of published work on simulations of hydrodynamics in bubbling and circulating fluidized beds are also
presented. © 1997 Elsevier Science Ltd.
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1. INTRODUCTION

1.1. Background

Two-phase flows are important in most industrial applications, examples being energy
conversion, paper manufacturing, food manufacturing and medical applications. It is of great
interest for the development of these applications to achieve a basic understanding of the complex
flow situations that arise. Vast numbers of experiments have been carried out for different
applications, a strategy that produces specific but expensive results. With modern computer
technology, however, it is possible to numerically solve the partial differential equations describing
multidimensional, time-dependent two-phase flow problems. It is thus interesting to develop the
theoretical background to a higher level. Empirical models are needed to close the set of equations
and, consequently, successful modelling is strongly dependent on experimental data.

Two-phase flow problems can be modelled in several ways. In some applications, e.g. film boiling
(separated flow), the two phases can be modelled with the established equations for single-phase
flows with a moving boundary between the phases. In practice, however, many flows are well mixed
and, for such cases, this method cannot be used. In applications with well mixed phases, e.g. when
the number of particles or droplets in the dispersed phase is large, averaging procedures are
necessary to make the equations solvable. The most important averaging procedures are space
average, time average and ensemble average.

The following sources are comprehensive publications on the derivation of basic two-phase flow
equations and different averaging procedures: Ishii (1975), Delhaye and Achard (1977), Bouré and
Delhaye (1982), Soo (1990), Drew and Lahey (1993) and He and Simonin (1994). These references
are recommended as a complement to the present publication.
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1.2. Scope of this study

The purpose of this study is to provide insight for newcomers in the field of simulation of
two-phase flows in fluidized beds. An attempt has been made to gather important models and
findings from a wide range of different publications to give a rapid introduction to the available
approaches to this physically and mathematically complex field.

This report describes the two-fluid model, derived with a general averaging procedure. The
derivation of the local instantaneous mass and momentum equations is described in section 2. The
methods of ensemble, time and space averaging are discussed briefly and these methods are applied
to the local instantaneous equations in section 3 and appendix B. The closure laws, i.e. topological,
constitutive and transfer laws, are discussed in detail in section 4. The models described in sections
2—4 will be referred to as traditional models. Section 5 describes a two-fluid model including
turbulence of both phases. Section 6 presents a summary of work done by different research groups
on the simulation of bubbling and circulating fluidized beds and gives a critical assessment of the
methods used.

1.3. Classification of two-phase flows

The variety of possible two-phase flow problems is illustrated by the different classification
methods suggested in the literature. A general classification is that of Ishii (1975), who divides
two-phase flows into four groups depending on the constituents of the flow: gas-solid flows,
gas—liquid flows, solid-liquid flows and flows of two immiscible liquids.

Ishii also makes a different classification depending on the topology of the flow, cf. table 1, which
distinguishes between the three classes: separated flows, mixed flows and dispersed flows. Dispersed
flows are studied in the present report. This class is in turn subdivided in terms of typical regimes,
as shown in the table. Of these regimes, the present study treats the particulate flow. However, there
are many different ways to characterize particulate flows as well. A classification by Kunii and
Levenspiel (1991) based on the fluidization velocity and particle properties is shown in figure 1 for
the specific field of fluidization. A number of other classifications for different types of two-phase
flows can be found in the literature, e.g. Hewitt (1982).

1.4. Classification of two-phase flow models

There are many ways to model a two-phase flow problem using partial differential equations
(PDEs), depending on the physical phenomena of interest and the nature of the problem. In this
report, interest is focused on Eulerian three-dimensional models. Ishii (1975) divides these into the
two categories of diffusion models and two-fluid models. A diffusion model is formulated by
considering the mixture as a whole, and can be represented by one continuity equation, one
momentum equation in each coordinate direction, one energy equation and one diffusion equation,
to take into account the effect of concentration gradients. A two-fluid model, which is the model
under consideration in the present work, consists of two continuity equations, two momentum
equations in each coordinate direction and two energy equations. Additional closure laws are
needed to close the set of equations, as described below.

1.5. Formulation of a two-fluid model

There are many ways, depending on the averaging procedure and the closure laws adopted, to
formulate a two-fluid model. The general idea is to first formulate the integral balances for mass,
momentum and energy for a fixed control volume containing both phases. This balance must be
satisfied at any time and at any point in space, and thus reduces into two types of local equations,
one being the local instantaneous equations for each phase and the other an expression of the local
instantaneous jump conditions, i.e. the interactions between the phases at the interface. In principle,
this set of equations could be solved by direct simulation, i.e. using a numerical mesh finer than
the smallest length scales of the flow and a time step shorter than the time scales of the fastest
fluctuations. This would require quite unrealistic computational times, however.

An alternative method would be to apply a Lagrangian approach for the particulate phase,
although this would result in too large a number of equations for cases with many particles, i.e.
for most practical applications. Recent attempts to use Lagrangian models are the work by
Hoomans e? al. (1996) who simulated a single rising bubble in a two-dimensional bubbling fluidized



EULERIAN TWO-PHASE FLOW THEORY APPLIED TO FLUIDIZATION 23

bed, and Yonemura et al. (1995) who studied numerically the effects of the physical properties of
the particles on the structure of particle clusters in circulating fluidized beds.

For the Eulerian approach, discussed in the present paper, the local instantaneous equations
must be averaged in a suitable way, either in space, in time or as an ensemble. This allows a coarser
mesh and a longer time step to be used in the numerical simulation, but, alas, introduces more
unknowns than the number of equations into the system, and thus necessitates the inclusion of
additional expressions to close the set of equations.

The closure laws are of three types: topological, constitutive and transfer laws, where the first
type describes the spatial distribution of phase-specific quantities, the second type describes physical
properties of the phases and the third type describes different interactions between the phases. As
most of these expressions are empirical, experimental data are needed in order to develop and verify
the laws. A general procedure for developing a two-fluid model is shown in figure 2. In the

Table 1. Different regimes for two-phase flows according to Ishii (1975)

Typical
Class regimes Geometry Configuration Examples
Separated Film flow TN Liquid film in gas Film cooling
flows ——p—e Gas film in liquid Film boiling

Annular Liquid core and gas film Film boiling

flow Gas core and liquid film Condensors

Jet flow Liquid jet in gas Atomization

Gas jet in liquid Jet condensor

Mixed or Slug or Gas pocket in liquid Sodium boiling in
transitional plug flow forced convection
flows

Bubbly Gas bubbles in liquid Evaporators with

annular flow

Dropilet
annular flow

Bubbly
droplet
annular flow

Film with gas core

Gas core with droplets
and liquid film

Gas core with droplets
and liquid film with gas
bubbles

wall nucleation

Steam generator

Boiling nuclear
reactor channel

Dispersed Bubbly flow Gas bubbles in liquid Chemical reactors
flows
Droplet flow Liquid droplets in gas Spray cooling
Particulate Solid particles in gas or Transportation of
flow liquid wheat
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Figure 1. Gas—solid flow classification according to Kunii and Levenspiel (1991), based on the Geldart
(1973) particle classification.

following, the averaging procedures are discussed in a general way, while the closure laws are
discussed only for gas—particle flows.

2. LOCAL INSTANTANEOUS EQUATIONS

2.1. General equations

Several references can be found in which the local instantaneous equations are derived for both
phases. The method used to derive the equations in this chapter was presented by Delhaye (1981)
and by Bouré and Delhaye (1982).

Consider a general volume fixed in space (cf. figure 3) and shared by two phases with phase index
k. The interface with the area between the phases 4,(¢) is moving with the velocity u;. When a vector
or scalar variable ¥, belonging to phase k is to be transported through the control volume using a
coordinate system which is fixed (Eulerian approach), the following integral balance can be written

2 2
) (%[ P dV>=J drdA+ 3, (—f pklﬁk(uk-nk)dA+J Pedi dV—f Je dA). 1]
k=t Vil A k=1 A0 Vikn A

integral balances of mass,
momentum and energy
Gauss’ and Leibniz’s
theorems STEP 1
local instantaneous eqs
and jump conditions
averaging procedure L————p‘} STEP 2
averaged equations ]
closure equations m—
L ] STEP3
closed set of PDEs
boundary and initial
conditions ' STEP 4
two-fluid mode!

Figure 2. General procedure for formulating a two-fluid model.
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phase k=1:V, (1), A ()

phase k=2 : V, (1), Ag (1)

interface : A

Figure 3. Fixed control volume containing two phases with a moving interface.

In this notation, m; is the outwardly directed normal unit vector to the interface of the volume
occupied by phase &, d/dz is the ordinary time derivative, u, is the velocity of phase &, p is the
density, ¥, is the conserved quantity, J, is the molecular flux, ¢ is the source term and ¢, is the
interfacial source term. In [1], surface tension is not included in the formulation because these
effects are negligible in gas—particle flows (the term involving surface tension would appear as a
line integral over a curve which is the intersection of the fixed control volume and Ai(t)). A more
complete formulation involving surface tension effects can be found in Delhaye (1974).

To continue the derivation, the velocity of a point on a geometric surface in space must be
defined. Consider a surface defined by r = r(x({, n, 1), ¥({, n, t), 2({, n, t)). The velocity of the

surface point, ({, 1), is defined by
or
"= (E>i.r/=const' [2]

The left-hand side of [1] can be transformed using Leibniz’s theorem, [A4] in appendix A, into a
volume integral and a surface integral which considers the movement of the interface. Furthermore,
the convective term (the second term on the right-hand side) and the diffusion term (the last term
on the right-hand side) can be rewritten as the sum of a volume and a surface integral using Gauss’
theorem, [A1]-[A3] in appendix A. Thus,

0
dij o dV = j ’i(pklpk)dV+j purn, d4, (3]
t Vil Vilt) ¢ Ay)
j‘ V(pkl//kuk)dV=J‘ pklﬁkuk-nk dA+J ‘Dkl//kll/.-‘nk dA [4]
Vi(e) Aglr) An)
and
J. V.]k dV=f Jk-nk dA‘f-J‘ Jk'llk dA4. [5]
Vi) Al) A1)

The surface integral over 4,(t) in [3] vanishes because the speed of displacement of the boundary
is zero as a consequence of the control volume being fixed.

Equation [1] can now be rewritten as one volume integral for the volumes occupied by the two
phases and one surface integral which expresses the jump conditions across the interface

Z <£ (Pkwk)+V~(pk;//kuk)+v.1k_pk¢k)dV_f

k=1 Vil Ay

<Z (s + Jk-nk)+¢,)dA =0. [6]

k=1

In the second integral of the above equation, 7 is the mass transfer per unit area of interface and
unit time, defined as

Phk = pr(W — W) my. (71
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Table 2. Values of i, Ji, ¢« and ¢ for the balance
equations and jump conditions

Balance Wi Ji [0 ol
Mass 1 0 0 0
Momentum Us _TA b 0
Energy Ex q — T U b U 0
Entropy Sk Qi /O Av/ps A

Equation [6] must be satisfied for any Vi(r) and A;(¢). Thus, the local instantaneous equation is
é
T (o) + V-(puiw ) +V-Ji—pip = 0 (8]

and the local instantaneous jump condition is

22: (fthk+Jk'nk)=—¢1. 9

k=1

The local instantaneous equation and the corresponding jump condition can be applied to the
transport of mass, momentum, energy, entropy, chemical species and so on.

2.2, Primary equations and jump conditions

2.2.1. Introduction.The local instantaneous equations and the corresponding jump conditions
for mass, momentum, energy and entropy are defined by table 2 and [8] and [9]. These sets of
equations are called the primary equations and primary jump conditions, respectively.
Secondary equations and secondary jump conditions, e.g. for the mechanical energy, can be derived
from these equations if needed.

2.2.2. Conservation of mass.

i
5 (P + V- (pew) =0, [10]
Yy = 0. (1]
k=1
2.2.3. Conservation of momentum.
£ (pew) + V- (pewewe)—V-Te— pib = 0, [12]
ot
Y (mwe — Ty ) =0, [13]
k=1

where T is the stress tensor and b is the body force (gravity).

3. GENERAL AVERAGING TECHNIQUE

3.1. Averaging principles

Modelling two-phase flows is a difficult task, both from a mathematical and a physical point
of view. The mathematical difficulty lies in the formulation of the two-phase flow as two single
phases with moving boundaries, while the physical difficulty lies in the modelling of the interaction
between the phases at the interface. If the number of particles suspended in a gas flow is large,
an averaging operator acting on the local instantaneous equations is needed (the alternative would
be to solve one ordinary differential equation for each particle using a Lagrangian approach).

This section discusses the averaging methods of the local instantaneous equations and jump
conditions. The use of averaging procedures in the two-phase flow theory has been extensively
discussed in the literature. This chapter is based mainly on Ishii’s book (1975), the publications
of Delhaye and Achard (1977, 1978) and a publication by Delhaye (1981).
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In the Eulerian approach, a given parameter, which can be a scalar, vector or tensor, is defined
by the following equation: f = f{r, t). The parameter is thus studied at a fixed point in space, r,
at any time, ¢. At this point and time, either one of the phases may be present. To simplify the
description, some kind of average is applied to the balance equations. The volume average is
performed around the fixed point r at the time ¢, whereas the time average is performed at the
point r over a time interval including the time r. The ensemble average is to be viewed as the
statistical average of the parameter f, at the point r and time ¢ over a large number of experiments
with the same initial and boundary conditions.

The volume average is defined as

<”%=%£p”mx@dz [14]

Whitaker (1969) gives the conditions under which the volume averaging procedure can be applied:
(characteristic dimension of phases)
« (characteristic dimension of averaging volume)
« (characteristic dimension of physical system).

The time averaging operator is defined by

<“;=7J (e [16]

-T2

According to Delhaye and Achard (1977, 1978), the time interval chosen for the averaging must
satisfy the following conditions:

(time scale of the turbulent fluctuations)
« (time interval for averaging)
« (time scale of the mean flow fluctuations).

For flows for which it is not possible to distinguish between the time scales of the turbulent
fluctuations and the time scale of the mean flow, Delhaye and Achard (1977, 1978) introduce a
double time-averaging operator.

The ensemble average, defined by

<”x=Jc“mmm, [18]

is the most general averaging process. In [18], dP(u) is the probability of observing process u and
¢ is the set of all possible realizations, cf. Drew and Lahey (1993). A practical example of the
meaning of the ensemble average is the averaging of a set of experiments in a fluidized bed starting
with the same initial distribution of particles and the same initial gas and particle velocity
distribution. There is thus no need to know the exact location of each particle nor the exact velocity
fields in the beginning. In other words, the ensemble average is the statistical mean value of any
parameter of interest at a given position and time over a number of experiments.

Both the time and spatial averages can be viewed as approximations of the ensemble average,
which are valid provided the small and large time or space scales can be separated as described
above. This is an application on a local scale of the ergodicity hypothesis, which states that if a
flow is stationary and homogeneous, the ensemble, time and volume averages are equivalent.

The averaging procedure leads to a model describing two interpenetrating, continuous media.
The averaging of the particulate phase is, on a larger scale, analogous to the averaging performed
in the kinetic gas theory, when the averaging of the molecular motion leads to the description of
the gas phase as a continuum, see also section 5.5. The single-phase equations of motion for a gas
or liquid are regarded as local instantaneous equations, valid in a ‘point’ in space and time. A
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‘point’ in this connection implies a space and time scale large enough to avoid the microscopic
uncertainties in molecular motion but small enough to avoid macroscopic variations in the flow
field. In analogy with this, the averaging of the particle motion in a disperse two-phase flow leads
to averaged equations of motion for the continuous particulate phase, which in the same sense can
be regarded as ‘local instantaneous’ equations, albeit on a larger scale.

The physical interpretation of the average, as a time, volume or ensemble average, may be
important when formulating appropriate closure laws. However, the distinction between the
different averages is not always obvious. For a fluidized bed, the three different types of averages
may well be identical, provided the criteria above are fulfilled. For a fixed bed, however, where
the particles do not move, a time average of the particle concentration at a given point in the bed
will either give the value zero or one, cf. [19] and [20], while a volume average over a volume dV
fulfilling the criteria above will give an appropriate value.

3.2. Derivation of the general averaged equations

The averaging methods presented above will be applied in the present section to transform the
local instantaneous equations and jump conditions into averaged balance equations and
corresponding averaged jump conditions. In so doing, the method presented by Drew (1983) is
used.

As shown in [14], [15] and [18], the averaging operators for the volume, time and ensemble
averages are formally similar. Thus, in the following, the general averaging operator <. . .)> denotes
any of the specific operators defined above.

A few basic relations are first introduced. The phase indicator function, X;, for phase k is a step
function defined in the following way

1, ifrek
Xelr, 1) = {0, otherwise. [19]

The average (ensemble, volume or time) of the phase indicator function is equivalent to the average
occurrence of phase k

Ay = <Xk>, [20]

where
o = 1. (21}

In the following, the average occurrence of the gas phase, og, is referred to as the voidage.
The averaging procedure is assumed to have the following properties

f+gr=Lf>+<g, [22]
K80 =S <&, [23]
{constant) = constant, [24]
(-5
VD =V f), (26]
Vfo=V-(f). [27]

Using the definition of the phase indicator, [19], together with [22]-[27] and the chain rule, the
following relations can be derived

HKXife> of X,
et <X* ot > + <ﬁ ot > [28]
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VX = (X VD + CAVXD, [29]
VLX) =XV i >+ {fi VXD [30]
Another fundamental relation is the following, which was derived by Drew (1983)
80X,
—at—‘+u,-vxk=0. [31]

According to Drew and Lahey (1993), [31] can be interpreted as the material derivative of the phase
indicator following the interface.

The first step in the averaging procedure is to multiply the local instantaneous equation, [8], by
the phase indicator function and form the average of the resulting equation. With the aid of
[28]-{31], the general form of the averaged balance equation is then obtained as

£ CXapal) + V-CXaphey +V- (XS = CKipihd

= <(Mklﬁk + i) %—A;,:> (32]

The right-hand side of the equation is the interfacial transport term. The gradient of the phase
indicator function is expressed as VX, = (30X, /0n)n,, where
0X,
on

Here, d,, is the Dirac’s delta function associated with phase k. Thus, the gradient serves to sort
out the mass and molecular fluxes at the interface. The Dirac delta function has the property

= —6. [33]

Jﬂf(é)é(é _ a)dé = fa) [34)

*

and, thus, averaging the product of the absolute value of the gradient and the fluxes gives as the
result the average contributory effect of the mass and molecular fluxes at the interfaces over the
whole domain of integration.

The gradient of the phase indicator function is also used when transforming the local
instantaneous jump condition [9], into an averaged jump condition

In the following sections, the averaged balance equations for mass and momentum are presented
together with the corresponding averaged jump conditions.

3.3. Averaged transport of mass and momentum

The specific balance equations of mass and momentum and the corresponding jump conditions
are given by the general averaged balance equation [32], the general averaged jump condition, [35],
and table 2. For a case in which there is no mass transfer between the phases, i.e. in which m; = 0,
the following equations are obtained. Averaged continuity equation

g; <Xk,0k> + V‘<kakllk>=0. [36]

With no mass transfer between the phases, the mass jump condition vanishes.
Averaged momentum equation with the body force equal to the gravitational acceleration

g; Xipwe) + V-CXipewewe ) = V<X T > — (Xipeg)

=<—Tk'VXk>=Mkl, [37]
where M,; is the interfacial momentum transfer.

IJMF 22/Suppl—B
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Averaged momentum jump condition

2 (—_TA.'VXk): 2 Mu=0=M; = —M. [38]

k=1 k=1

All the terms on the left-hand side of the balance equations represent self-interacting quantities,
while the terms remaining on the right-hand side are interfacial transfer terms, i.c. they represent
interactions between the phases. As described in section 4.4 below, the transfer terms are modelled
using empirical expressions, and the jump conditions place constraints on these.

3.4. Reynolds-decomposed and weighted averaged equations

3.4.1. Reynolds decomposition. The averaged equations presented above cannot be solved
directly, as they contain averages of products of the dependent variables. To obtain a solvable set
of equations, they must first be rewritten into expressions containing products of the averaged
variables. This is done by employing the Reynolds decomposition and a weighting procedure to
the variables before averaging, as demonstrated by Drew and Lahey (1993) for an
ensemble-averaged two-fluid model and by Ishii (1975) for a time-averaged two-fluid model.
Reynolds decomposition and time averaging are normally used in the field of single-phase
turbulence modelling in order to separate the fluctuating components of the variables from the
time-averaged variables, but, here, the main purpose of the decomposition and weighting is to
separate the averages of products into products of averages. The phrase ‘Reynolds decomposition’
is used, stricto sensu, in connection with time averaging, but this terminology is used in the present
case regardless of the type of averaging procedure employed. The procedure will result in extra
terms in the equations, containing correlations of the fluctuating components. These extra terms
are analogous to the Reynolds stress terms in the case of single-phase turbulence modelling.

Applying the Reynolds decomposition and the weighting procedure to a general variable, f, the
following expression is obtained

F=N+r, (39]

where the first term on the right-hand side is a weighted mean value and the primed term is the
deviation from this mean value. The weighting procedure is described in section 3.4.2.

3.4.2. Weighted averaged variables. Generally, the weighted mean value of a given scalar or
vector or a tensor f is defined by

CIOY = WKW, [40]

where W is an arbitrary weighting factor. However, before further discussing weighted mean values,
some theorems and definitions must be given.

The weighted mean value should have all properties given by [22]-{27]. To separate the average
of products into products of averages, two different weighting procedures are used. The variables
are either weighted with the phase indicator function (phasic average) or with the phase indicator
function times the density (mass-weighted average or Favre average)

)% =L Xf H/{X> (41]
or
{f %o = (Xuprf DI Xpr ). [42]

The reason for introducing the mass-weighted average is to be able to split up the correlations
between the fluctuating density and the other fluctuating variables. For convenience, the weighted
variables and terms are summarized below.

The velocities are taken as mass-weighted averages: {u; >** and {u;>*#, where in the following,
the notation <u, Y*** = U, will be used. Note also that the average of the fluctuating velocity equals
zero, {u; Yo =0,

The density of phase k is weighted using the phasic average

(o)™ = L Xupi D<K > = {Xupi Dlou = pi*. [43]
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The stress tensor of phase k& is weighted using the phasic average
(T = T [44]

The averages presented above are all averages of single variables. In contrast to this, the fluctuation
stress tensor of phase k is the phasic average of products of the fluctuating velocity components,
defined as

TR = — (X wi /<X = — {Xiputiui Doy [45]

3.4.3. Reynolds-decomposed and weighted averaged equations. The decomposed form of the
balance equations can be derived by applying Reynolds decomposition and rewriting the averaged
equations with the aid of the weighted variables. The full details of the derivation are given in
appendix B. The continuity and momentum equations can be summarized as follows.

Continuity equation

2 (wpl) + V-(aupiU) =0. [46]
Momentum equation
g (p#Ur) + V-(aept U Up) = V- (o (TF + TR)) + oupvg + M. [47]

In the momentum equation, the interfacial momentum transfer to phase & is denoted in the
following way o

M = "<Tk'VXk>- [48]

As mentioned above, the momentum transfer is modelled using empirical expressions, and the
jump condition places a constraint on this term. This is described in section 4.4.

4. CLOSURE LAWS

4.1. Basic principles

The equations in this section are applicable regardless of the averaging method used for the basic
balance equations, and the averaging symbols are generally left out. When choosing closure laws
for a two-fluid model, some basic principles must be considered in order to close the problem
successfully, as discussed by Drew and Lahey (1993), Arnold et al. (1990) and Truesdell and Toupin
(1960). Four of these principles are:

e equipresence;

e well-posedness;

o frame indifference;

o fulfilment of the second law of thermodynamics.

Equipresence means that any variable described by a closure law should be a function of all the
other variables unless the independence of any of them can be shown. Well-posedness means that
the set of differential equations has a unique solution which is stable. Frame indifference means
that the closure laws should not depend on the reference frame.

An entropy inequality can be obtained from [8], table 2 and the second law of thermodynamics.
According to Ishii (1975), this inequality is used as a restriction on the constitutive laws to ensure
that the second law of thermodynamics is fulfilled. The entropy inequality should always be
fulfilled, but most models do not take this into consideration. Arnold et al. (1990) presented a
method to test whether the closure laws in combination with the balance equations fulfil the second
law of thermodynamics. The entropy source originates both from heat transfer and from viscous
dissipation. In many cases, the entropy increase is negligible, particularly for cases without heat
transfer, as the viscous contribution is often small. However, the need to investigate the second
law of thermodynamics should not be underestimated, as a violation of this principle is a warning
that the model is not physically sound.
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4.2. Classification of closure laws

A set of averaged partial differential equations describing a two-phase flow problem needs extra
equations to close the system. As mentioned in section 1.5, the closure laws are of three types:
constitutive, transfer and topological laws. The constitutive laws relate physical properties using
axioms and experimental data. The transfer laws are empirical equations that describe the
interaction between the phases occurring at the interface. The topological laws are sometimes
needed to describe the spatial distribution of a flow variable, e.g. for one-dimensional pipe flow
models of two-phase mixtures in which the radial concentration or velocity distribution of one of
the phases may be needed.

The different types of closure laws just mentioned are sometimes grouped together and simply
referred to as constitutive laws. However, as stated by Bouré and Delhaye (1982), the division of
the closure laws into the three types mentioned is more appropriate, as these types have different
physical significance.

The key to accurate modelling lies to a large extent in the closure laws used. A considerable
number of models has been developed for this purpose, but, keeping in mind the vast numbers
of possible two-phase flow configurations, it may still be difficult to find suitable closure laws for
a specific case. To limit the present study, only closure laws appropriate for gas—particle flows have
been considered.

4.3. Constitutive laws

The constitutive laws specify how the physical parameters of a phase interact with each other,
but do not describe the transport of mass, momentum or energy across the interface between the
phases. The interfacial momentum transfer is described in section 4.4, while interfacial mass and
energy transfer have been excluded from this study. For the particulate phase, there are two quite
different ways of modelling such flow parameters as dynamic viscosity, bulk viscosity and particle
pressure. One is to make empirical models based on the particle properties and the local voidage.
These traditional models are relatively simple, and are thus easy to implement in a computer code.
The traditional models will be discussed in the present section. The other way to model these
properties is to use the so-called kinetic theory of granular flow, e.g. Jenkins and Savage (1983)
and Savage and Jeffrey (1981). Generally, these kinds of models are more complex and
time-consuming to solve, but many researchers believe that they are applicable for a wider range
of problems. Models based on the kinetic theory of granular flow are discussed in section 5.

4.3.1. Viscous stress. The viscous stress of phase k of a two-phase mixture, 7,, enters into the
momentum equations from the term V-(x, 7/*) in [47], which is split up into a pressure term and
a shear stress term as

V'(O(AT‘;(‘)ZV'(JQ(—PJ + ) = —V(uPr) + V- (uT). [49]

The physical phenomena in gas—particle flows giving rise to the viscous stress are not well
understood, and the literature is inconsistent in the use of terms such as mixture viscosity, apparent
viscosity, effective viscosity, suspension viscosity, etc.

When studying the literature, it is sometimes not fully clear whether an author refers to a stress
in the gas phase, in the particulate phase or in the mixture as a whole. Furthermore, when discussing
the particulate phase viscosity, u,, it is often uncertain whether or not the fluctuating stress tensor
contribution has been included, i.e. the shear contribution of the tensor T%¢.

The stress tensor of both phases is often modelled using the Newtonian strain—stress relation

T = &(V-U)T+2 (S, — (V-UOD), [50]
where the strain-rate tensor is defined by
S = {VU, + (VU)"). [51]

Non-Newtonian properties of the particulate phase can be taken into account by modelling the
particle viscosity as a function of the voidage, u, = p,(6), as will be discussed further in this
section. The bulk viscosity of phase k, &, is commonly set to zero in both phases, in accordance
with Stokes’ assumption, e.g. Panton (1984). In practice, the reason for neglecting the bulk viscosity
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is the lack of reliable measurement techniques, cf. Pritchett et al. (1978). However, it is possible
to derive an expression for the bulk viscosity theoretically, using the kinetic theory of granular flow,
cf. section 5.

To fully describe the stress in each phase, as required for a two-fluid model, expressions for the
gas and particle viscosities are needed. The gas and particle viscosities are often set to a constant
value for each of the phases or are neglected. At high particle concentrations, the particle viscosity
is several orders of magnitude larger than the gas viscosity. As mentioned earlier, the particle
viscosity may be modelled as a function of the voidage. However, the vast majority of the viscosity
models available are for the mixture viscosity only. It is not obvious how the mixture viscosity is
related to the phase viscosities, but one way is to assume a linear relationship and weight the
viscosities as

Umix = 06l + (1 — ag)i,. [52]

The validity of this crude assumption has not been verified, but it offers a way of modelling the
particle viscosity for dilute suspensions by inserting the gas viscosity and the mixture viscosity taken
from one of the mixture viscosity models presented below.

Table 3 gives a brief summary of mechanisms suggested in the literature to contribute to the
viscosity of the respective phases. Note that the reasoning is quite similar for both phases when
explaining the kinetic and collisional effects, the main difference being the different scales used for
the phases. Hwang and Shen (1989) suggest that the particle presence effect gives rise to a stress
in the particulate phase only. Many of the ideas used to define the particulate phase viscosity are
closely related to the kinetic theory of gases.

Table 3. Viscocity mechanisms in the gas and particulate phases

Effect Gas phase Particulate phase

uly) L Random molecular motion across a planeand  Random particle motions across a plane

/
mean gas velocity gradient give rise to  and mean gas velocity gradient give rise to
P O\ P momentum transfer across the plane momentum transfer across the plane
4
¥
1 940
t.;

Kinetic effect

uly) Inter-molecular forces. When the average Frictional inter-particle forces. May be
spacing of molecules is only a few times their  very large when the solids concentration is
diameter, attractive forces between the mol-  high

ecules become significant. Negligible in gases
where the mean path is large, but important
in liquids

t x

Collisional effect

Ag
m h N\ No contribution of this effect to the gas  Shear stress acting on 4. due to the fluid
N/ N/ u viscosity has been found in the literature force on the surface of the particles

Particle presence effect
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The kinetic contributory effect to the viscosity of a gas can be understood by considering the
gas on a molecular level, e.g. Panton (1984), pp. 142-145. The source of kinetic shear stress is the
microscopic transport of momentum by random molecular motion across a plane, with different
mean gas velocities on each side of the plane. The momentum difference that the gas molecules
experience when they cross the plane is balanced by a shear stress acting on the plane. The kinetic
contribution to the viscosity is, according to kinetic theory of gases, defined as the proportionality
constant between the kinetic shear stress and the gradient of the mean gas velocity parallel to the
plane with respect to a coordinate direction normal to the plane. A corresponding effect is present
in the particulate phase, but on a larger scale, i.e. replacing the gas molecules with particles in the
previous discussion.

The effect referred to as collisional viscosity is an effect of the tangential force arising from
molecular interactions between nearby molecules, which can be likened to the frictional sliding that
occurs between particles during a collision. In the gas phase, the molecules are at a mean distance
such that the collisional effect is negligible as compared with the kinetic effect, but this effect
dominates over the kinetic effect in a liquid, cf. Panton (1984). In the particulate phase, the
collisional effect is the dominant contribution to the viscosity at high particle concentrations. The
normal force arising from particle collisions is included in the collisional particle pressure term
discussed in section 4.3.3.

Several workers discuss a viscosity effect arising from particles moving along the line of centres
between the particles. This effect is referred to as the proximity effect in the present
publication. The effect is related to the lubricating layers that exist between the particles in
the gas-particle flow, i.e. to the viscous region in the gap between two nearby particles. In
contrast to the effects discussed in table 3, the proximity effect is related to the mixture viscosity,
and it is thus not included in the table. Theoretical models for the mixture viscosity based on this
effect have been proposed by e.g. Einstein (1906, 1911) and by Frankel and Acrivos (1967), cf.
below.

The first model presented for the mixture viscosity of dilute gas—particle flows with less than 3%
volume concentration of particles was that of Einstein (1906, 1911), who proposed that

fie = (1 + 2.5, + O(a)), o, < 0.03. [53]

Another model for the mixture viscosity of dilute flows was presented independently by Brinkman
(1952) and Roscoe (1952), and is given by the following equation:

Humix = #G(] - Cxp) 15~ [54]

The mixture viscosities for dilute suspensions obtained from [53] and [54] are shown in figure 4.
In the limit of densely packed particles, e.g. in the dense part of a bubbling fluidized bed, a
theoretical model based on the proximity effect was developed by Frankel and Acrivos (1967):

9 Ol /Ol max]
Umix = Mo g <T[_—F’[L‘7T]‘T>, 0o/ Opmax — 1, (55]
p/ Yp.max

where o,m. 15 the maximum possible particle concentration.

10
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Figure 4. Mixture viscosities for dilute suspensions.
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Figure 5. Mixture viscosities for dense suspensions.

Another theoretically based model applicable to high particle concentrations is presented by
Vand (1948). In addition to the effect taken into account by Frankel and Acrivos, this model also
includes the collisional effect of the particles. For spherical particles, the model can be stated as

2.5q, + 2.7a2
- Ze-p 1= '7p
Hmix = Ho e"p[ 1= 0.609, } [>6]

An empirical model for dense suspensions is that of Eilers (1943)

Homix = H6 TE\ T = otp/opmenl’ )

The mixture viscosities for dense suspensions obtained from [55}-[57] are shown in figure S.

Particle concentrations between the extremely dilute and extremely dense regions are commonly
observed in many gas—particle flow applications, such as bubbling fluidization. A theoretical model
that also covers the intermediate region was presented by Graham (1981)

9 1 1 1 1
Hmix = HG(Z [m][w — m — [—I_'F-W] + 1+ 2.5ap>3 [58]
where
v = 1 - (ap/ap,max)m_ [59]

(ap/ap.mﬂx)m

mixture viscosity (Pa.s)

o] 0.1 0.2 0.3 0.4 0.5 0.6
particle concentration (=)

Figure 6. Mixture viscosities for the entire range of particle concentrations.
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Table 4. Empirical constants for [64)

B B Source

—8.76 5.43 Gidaspow and Ettehadieh (1983)
—10.46 6.577  Ettehadieh er al. (1984)
—10.5 9.0 Gidaspow et al. (1989)

This model converges to Einstein’s model, [53], in the limit of low particle concentrations, and to
the Frankel and Acrivos model [55] in the limit of maximum particle packing.

Another model for the mixture viscosity covering the entire range of particle concentrations is
that of Ishii (1977)

Uiy = MG(I — ap/ap.max)_2.51p'mﬂ’((“p + 0.4 up + uG). [60]

Assuming the viscosity of the particulate phase to be considerably greater than that of the gas
phase, [60] is simplified as

)umlx = Ile(l - ap/ap.max)iz'”p'md& [61]

The mixture viscosities obtained from [58] and [61] are shown in figure 6.

4.3.2. Gas pressure. The gas pressure is set equal to the static pressure, P = P.

4.3.3. Particle pressure. The particle pressure is more difficult to interpret than the gas phase
pressure. In the literature, there are two different ways of formulating expressions for the
particle pressure. One is based on the kinetic theory of granular flow, which is an extension of
the kinetic theory of dense gases, cf. section 5. Here, the alternative traditional approach based
on the particle propertiecs and the local voidage has been used, as described below.

The pressure in the particulate phase is considered as the sum of three effects, one corresponding
to momentum transport caused by particle velocity fluctuation correlations, Pk, one caused by
particle interaction (collisions), P,.n, and one being a contribution from the gas phase pressure.
The pressure gradient in the particulate phase is thus

V(“PPP) = V(‘“PPP-kl") + V(apppxnll) + V(appg). [62]

The first term on the right-hand side of [62] is neglected in the traditional models. The second term
of [62] is referred to as the particle collisional pressure gradient. A comprehensive discussion of
the particle collisional pressure in fluidized beds is presented by Campbell and Wang (1991). The
collisional component is the dominant effective pressure effect in the dense regions of a fluidized
bed. This pressure transmits a force both by short-duration collisional impacts and by
long-duration particle-particle contacts. Experimental results by Campbell and Wang show that
the particle collisional pressure is highest if the bed is not fluidized and the particles rest on each
other, i.e. when the long-duration contact force is high. As the gas flow increases towards the
minimum fluidization velocity, the particle collisional pressure decreases as the drag force starts
to dominate over the long-duration contact force. Increasing the gas velocity above the minimum
fluidization velocity causes the particle collisional pressure to increase again, now as a result of
an increasing frequency of the short-duration collisional impacts.

Table 5. Empirical constants for [65]

Go C ¥ Source

1.0 600.0 0.376 Bouillard er af. (1989)

1.0 500.0 0.422 Gidaspow and Syamilal (1985)
1.0 20.0 0.62 Gidaspow and Ettehadieh (1983)
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The gas pressure gradient enters into [62] as a ‘buoyant’ effect, i.e. if there is a gas pressure gradient
through a collective of particles, it will exert a force on the particles, and, thus, the particle pressure
gradient will be reduced or increased depending on the sign of the gas pressure gradient, in accordance
with [62].

Several models for the particle collisional pressure-gradient term presented in the literature are
based on the following formulation

V(o Pocon) = —G(atg) VoG- [63]

The effect of the particle collisional pressure-gradient term is to keep the particles apart so that the
calculated particle concentration does not exceed the maximum concentration obtainable for a given
sphericity and size distribution of the particles. This term is more often referred to as the
particle-particle interaction force, and this terminology will be used in the following. The function
G(ag) can be thought of as a modulus of elasticity for the particulate phase, which must be modelled
empirically.

An overview of different models for the modulus of elasticity is given by Massoudi et al. (1992).
The empirical models of G compared here are of two types

Glag) = 10%%+ [64]
or
G(ag) = Goe~Ce =, [65]

Empirical values for the constants in [64] and [65] obtained by different investigators are listed in
tables 4 and 5, respectively, and the results are plotted in figures 7 and 8.

As shown in figures 7 and 8, the results obtained from the different models of G differ widely. The
formulation of G as a function of the voidage only may not fulfil the principle of equipresence for
closure laws by Drew and Lahey (1993), mentioned in section 4.1, which could then partly explain
the large discrepancies between the results. However, the main effect of the particle-particle
interaction force is only to prevent the particulate phase from becoming too densely packed, and
the large deviations between the different models for G may not significantly affect the time-averaged
solutions for the concentration, velocity and pressure fields of the phases, although this remains to
be investigated.

4.4. Transfer laws

4.4.1. Mechanisms of interfacial momentum transfer. Different mechanisms of interfacial
momentum transfer have been discussed for one-dimensional two-fluid models by, e.g. Albraten
(1982) and Andersson (1991). They investigated the importance of the different mechanisms by
studying the dimensionless equations of motion and making comparisons with experimental results
from fluidized beds. In the present work, a more general, three-dimensional formulation is used,
cf. Ishii (1975) and Drew and Lahey (1993).

The term under consideration here is the interfacial momentum transfer term

Mkl = ’_<Tk'VXk> [66]
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Figure 7. Modulus of elasticity obtained from [64].



38 H. ENWALD 1 al.

pry
[=]
»

~

-
o

W

e
o

[

—
=]

-

modulus of elasticity (N/m2)
o

-
%

voidage (-)

Figure 8. Modulus of elasticity obtained from [65].

from the Reynolds-decomposed and averaged momentum equation [47]. Neglecting the fluctuation
stress term T7°, the right-hand side of [47] becomes

Ve(ouTi)+oupig + My
=—u, VP — PVoy, — V(o, Pycon) + V- (T )+ ou px g8 + Mu, [67]

where the stress tensor Ty has been introduced as T, = — P,T + 7, and the gas pressure is set equal
to the static pressure. The particle-particle interaction force, —V(«,P,.n), is present only in the
particulate phase equation. According to Drew and Lahey (1993), it has become customary to
rewrite the interfacial momentum transfer, My, in a form involving the interfacially averaged
pressure and shear stress of phase k. To do this, the following definitions of the weighted averaged
interfacial pressure and shear stress are introduced

Py = {PVX, 0 )/KVX, ' >,
T = (VX)) YKV XD [68]
and My is rewritten as
My = — (T VX
={PVX,> — (W VX
=PUVXD) — 5 (VX > —(T4H VX
=P, Vo, — 7" Vo, + M3, [69]
Here, M, = —(T%-VX,> is a generalized drag force acting on phase k and
T8 = —(Pi— P+ (% — %) [70]

is the generalized stress tensor associated with this drag.

A form of the jump condition for the interfacial momentum transfer is given by [38]. It can be
shown that this jump condition is also applicable to the generalized drag. A summation of [69]
over both phases gives

Y Ma=P Y Vo 5 Y Vo + 3 MY, [71]
k=1 k=1 k=1 k=1

The phasic relation, {21], can be differentiated to show that the first and second terms on the
right-hand side of [71] are equal to zero. Using the momentum jump condition given by [38], the
remaining part of [71] is the jump condition for the generalized drag

i M, = 0. [72]

The right-hand side of the averaged momentum equation [67] can now be written as

—‘(kaP —_ V(dpPp_cou) + V'(otﬁk)—#akpkg + MZ‘] + (P| — P)Votk —_ fl'Vak, [73]
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where the last two terms are referred to as the interfacial pressure difference effect (or the
concentration gradient effect) and the combined interfacial shear and void gradient effect,
respectively. According to Albriten (1982) and Rathman (1981), the interfacial pressure difference
effect is believed to be insignificant for the two-fluid model. According to Ishii and Mishima (1984),
the combined interfacial shear and void gradient effect dominates over the generalized drag, Mj;,
for separated flows, but is generally ignored for dispersed flows, i.e. for the type of flow considered
here. Thus, the right-hand side of [47] can be simplified as

—othP — V(otpPpm") + V-(ak‘?k)+akpkg + Mg, [74]

The generalized drag concept was originally conceived for gas liquid flows, e.g. Ishii and Mishima
(1984), where the interfacial pressure difference effect and the combined interfacial shear and void
gradient effect have a physical justification. However, the physical interpretation for gas—particle
flows is less clear. For a dispersed flow, My, is the generalized drag force per unit of volume on
a suspension of particles of mean diameter d4,, and it is normally divided as

Mg] = np(Fdr + Flr + Fam + Fhi + Fot)7 [75]

where the forces in the brackets on the right-hand side of [75] are the forces acting on a single
particle in a suspension and where n,, the number of particles per unit volume, is defined as

n, = 6(1 — ag)/nd>. [76]

The forces in [75] are discussed in the following subsections for the particulate phase only. The
corresponding forces for the gas phase are obtained by changing signs in the particulate phase force
expressions in accordance with the jump condition for the generalized drag [72].

4.4.2. Stationary drag force. The stationary drag models available in the literature are based
either on correlations for the drag coefficient for one particle in a suspension, Cp, or on the pressure
drop per unit length in a suspension.

The stationary drag force on a particle in a suspension can be defined either in terms of the
relative superficial gas velocity or the relative interstitial velocity. It seems customary for researchers
who base their models on the work of Richardson and Zaki (1954) to use the definition based on
U, = ac(Us — U,), which is sometimes referred to as the apparent relative velocity, cf. Boemer et al.
(1995). For researchers coming from other fields, for example boiling, the definition used is
normally based on the relative interstitial velocity (U, = Ug — U,).

The drag force acting on a single particle in a suspension can be written as

Fo = 1Cops|U|U(nd:/4), (771

where U is either the apparent relative velocity or the relative interstitial velocity, depending on
the velocity on which the drag coeflicient Cp is based. The contributory effect of the stationary
drag force to the generalized drag [75] is

ondr = % (1 - dG)CDp(;lUIU. [78]
P
For the pressure drop per unit of length in a suspension, Foscolo ez al. (1983) showed that
ondr = (ZGVP. [79]

To solve the averaged momentum equations numerically, the stationary drag force is usually
written as

n,Fa = KU,, [80]

where K is sometimes referred to as the drag function.
According to Di Felice (1994), the steady-state force balance applied to a particle in a suspension
is
Veoppg + For — V,VP =0 [81]
if there is no effect of particle collisions. The pressure gradient in a steady homogeneous suspension
is equal to the buoyancy force exerted by the homogeneous mixture

VP = aspog + (1 — aG)p,8. (82]



40 H. ENWALD er al.

This expression is sometimes referred to as the manometer formula, and it is obtained by adding
the steady-state momentum equations of the two-fluid model, ignoring the viscous terms and the
particle-particle interaction force. When [81] and [82] are combined, the drag force acting on a
particle in a suspension can thus be expressed as

Fo = —asV,(p, — polg. (83]

This is the drag force included in the expression for the generalized drag, [75]. Wen and Yu (1966)
formulated a slightly different expression for the stationary drag force, based on a steady-state force
balance applied to a particle in a suspension similar to that of {81] but in which the pressure gradient
was replaced by the buoyancy force, pgg, exerted by the gas phase only. Thus, the stationary drag
force defined by Wen and Yu becomes

1
Fv = —Vilpr — palg = e Fo, (84]
r.e. it differs by a factor «g from the form of the stationary drag force included in [75]. In the work
of Wen and Yu, it was shown that

[Fel/IF,| = Cox/Co, = flow), [85]

*5_based on the work of Richardson and Zaki

where the voidage function was taken as f(og) = ag
(1954).

To compute the drag function, K, the relation C}, = x;Cpx obtained from [84] must be combined
with [78], [80] and [85]. Employing the apparent relative velocity in [78], the following expression

for the drag function, proposed by Gidaspow (1986), is obtained

3

K=37

Col(l — 96(‘.),0(;|Up - U(i\fxf;l'ﬁs» [86]

where the drag coefficient on a single sphere is given by Schiller and Naumann (1935)

Co — 24(1 + 0.15(Re)™**)/Re if Re < 1000 (87)
2 700.44 if Re > 1000
and the Reynolds number is
Re = [J(;O((;;Up — U(;i({’p’r”lt(}. [88]

Reynolds numbers larger than 1000 are not often encountered in fluidized beds except at
combinations of high pressure operation and large particles. The drag function correlation, [86],
18 valid only for dilute suspensions, with z¢ > 0.8. A summary of alternative correlations for the
drag coefficient for a single sphere, Cp., is given in a book by Clift er al. (1978).

A different expression for the drag function for particulate flows, K. based on the relative
interstitial velocity, was derived by Ishii and Zuber (1979). They introduced a Reynolds number
based on the mixture viscosity, motivated by the fact that the presence of other particles makes
a single particle see an increase in the resistance to its motion which appears as though it arises
from an increased viscosity. Using a similarity hypothesis for the viscous regime, they derived the
following expression

-3

K=3q

CD(I - (Z(;)p(‘,“_;p - U(,'. [89]

where the drag coefficient for a particle in the suspension is given as
Co = 24(1 + 0.1(Re)"™)/Re, [90]
and the Reynolds number is now defined as
Re = pg|U, — Uqld,/ ttonix- (911

The mixture viscosity is defined by [60], in which the maximum packing is &, . = 0.62. The drag
function correlation, [89], should be used with caution when =, is close to its maximum value, %, wax,
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because, in this limit, the mixture viscosity becomes infinite and the Reynolds number becomes
zero, resulting in an infinite value of the drag function.

An alternative drag function correlation is that of Syamlal and O’Brien. This correlation has
been used for both circulating and bubbling fluidized beds, cf. Syamlal and O’Brien (1988) and
Syamlal and O’Brien (1989), respectively. The correlation is expressed as

3 1
K = 47 Coro g ta(l = 20)|Uy — Ual, [92]

where R, is the ratio of Richardson and Zaki, i.e. the ratio between the falling velocity of a
suspension (superficial) and the terminal velocity of a single particle. Syamlal and O’Brien (1988)
suggested a correlation for this ratio as a function of the Reynolds number based on the relative
interstitial velocity and the voidage

2R = Ci(a) — 0.06Re
+((0.06Re)* + 0.12Re(2C(0a6) — Ci(a6)) + Chlos))™, (93]

where the functions C,(ag) and C,(og) are given by

0.8a5® if ag < 0.85

__ A4l4 _
Ci(ag) =as" and Cyag) = {aé“ if oo > 0.85° [94]

The drag coefficient in [92] is obtained from the correlation proposed by Dallavalle (1948)
R 2
Cp = (0.63 +4.8 /R—E) , [95]

Re = po|Up — Us|dy/pa. (96]

where

Di Felice (1994) recently presented a correlation for a voidage function, g(xg), which relates the
stationary drag force for a particle in a suspension to the drag force on a single particle. This
voidage function is related to the voidage function by Wen and Yu, [85], as

g(aG) = |Fdrl/|FS| = CD/CDs = Oqu(O!G)~ [97]

Di Felice expresses the voidage function in the form g(ag) = ag? which, in combination with [78],
[80] and [97], gives an expression for the drag function, K. Employing the apparent relative velocity
in [78], the following expression for the drag function is obtained

3

K =T CDs(l - aG)pGlUp - UGlaé_Ba [98]
44,

where the drag coefficient is given by Dallavalle (1948) as

2
Cos = (0.63 +4.38 /EIE> . [99]

Di Felice showed that the exponent, §, is not a constant but depends on the Reynolds number as
B =3.7—0.65exp(— (1.5 — log(Re))*/2). {100]

Figure 9 shows the different correlations based on Cp. The drag function is plotted as a function
of the voidage for a relative interstitial velocity of 1.0 m/s, a sphericity of 1.0, a maximum particle
volume concentration of 0.62, a mean particle diameter of 0.7 mm and a temperature of 293 K.

As shown in the figure, there is quite good agreement between the different correlations, with
an exception for the correlation of Ishii and Zuber, [89]-{91], in the dense region. This deviation
is a consequence of the mixture viscosity tending towards infinity.

One of the difficulties encountered in the freeboard region of circulating fluidized beds is the
prediction of the clustering effect, cf. O’Brien and Syamlal (1993). The terminal velocity of a cluster
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Figure 9. Comparison of the drag functions based on Cp.

exceeds the terminal velocity of a single particle. A correlation for the terminal velocity ratio taking
into account the clustering effect is given by O’Brien and Syamlal (1993)

Ru, = R(1 + Ci(o)Re ag exp{ —0.005(Re — 5)* — 90(Re — 0.92)%)), [1o1]
where Ci(og) is defined by

250 if G, =98 [kg/m’, s]
Giloa) = {1500 if G, = 147[kg/m?, 5] [102]
and G, is the particle recirculation mass flux. Replacing the velocity ratio, R, with the velocity ratio
corrected for cluster effects, R..s, in the model by Syamlal and O’Brien, [92]-[94], yields a drag
function that takes into account cluster effects.

Figure 10 shows the drag function, corrected for the clustering effect, for different mean particle
diameters. This effect can be seen in the plots as a local minimum in the drag function in the voidage
interval 0.7-0.95. As shown in the figure, the clustering effect decreases with increasing diameter.
With the exception of the particle diameter, the flow parameters used in figure 10 are identical to
the ones used for the correlations in figure 9.

A general correlation for the pressure drop per unit of length over a fixed bed was introduced
by Ergun (1952), who proposed that

é_PZISO(l_—f‘"ﬁ):#G—%+1.75(I__}_°_‘i)pG—% [103]

L s (¢d,) Lo od,
Many researchers, e.g. Gidaspow (1994), assume the Ergun equation to be valid under fluidized
conditions, for as < 0.8, so that the equation can be rewritten as a drag function applicable to a
two-fluid model. This expression of the drag function is obtained by combining the Ergun equation
with [79], replacing the pressure gradient by AP/L, and [80], as

K =150 L=20)te 75U = 20)pall, = Ug|

[104]
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Figure 10. Drag function by Syamlal and O’Brien, [92]-[94], corrected for the clustering effect for different
particle diameters with the aid of [101}.
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Gibilaro et al. (1985) introduced a correlation for the pressure drop per unit length for fluidized
beds, covering the whole range of possible values for the voidage

2
% - (%33 ¥ 0.336) ”‘jTU‘) (1 — a0)og*. [105]
P

Combining [105] with [79] and [80] and replacing the pressure gradient with AP/L, the drag function
becomes

— D p_G.l_M _ -18
K—<Re +0.336> o (L= o)™, [106]

where the Reynolds number is defined by [88].

Figure 11 shows the two correlations based on the pressure gradient for the same flow conditions
as those in figure 9. The correlation given by Ergun shows quite good agreement with the
correlations based on the drag coefficient, even though it was originally developed for a fixed bed,
while the correlation of Gibilaro ef al. gives the lowest values of all the drag function correlations,
at least for the flow conditions chosen in the comparison. It should be noted that, of all the drag
correlations included here, the Ergun correlation is the only one to take into account the particle
sphericity.

4.4.3. Transverse forces. A particle moving in a fluid experiences a transverse force (sometimes
referred to as lift force), if the flow is non-uniform (i.e. in the presence of a velocity gradient), if
the particle is rotating or if the particle moves in the vicinity of a wall. Most investigations of
transverse forces have been done for low Reynolds numbers («1) or for very large Reynolds
numbers (> 10°). QOesterlé (1994), however, made an investigation of these forces in the Reynolds
number range of 1-1000, which is typical for gas—particle flows. The study does not take into
account the presence of other particles, but the results can be applied if the particle diameter is
very small in comparison with the distance between particles. The study shows that:

e the transverse forces are not negligible and tend to increase with increasing particle diameter;

e if there are no wall-particle collisions, the transverse force resulting from the velocity gradients
is at least as important as the transverse force caused by the particle rotation;

o if there are wall-to-particle collisions, the transverse force caused by the velocity gradient
decreases but is not negligible.

According to Drew and Lahey (1993), the transverse force resulting from the velocity gradients
acting on the particles in a suspension per unit volume is given by

ontr = _CjtrpG(1 - aG)(UG — Up) X (V X UG) [107]

4.4.4. Added mass force. The added mass effect occurs when one phase accelerates in relation
to the other. The accelerating phase must overcome the inertia of the mass that lies in its path. An

drag function {(kg/m3,s)

0.4 0.5 0.6 0.7 0.8 0.9 1
gas concentration (=)

Figure 11. Comparison of drag functions based on the pressure gradient.
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expression for the added mass force on the particles in a suspension per unit volume is given by
Drew and Lahey (1993)

[108]

onam = Cam(l - (‘XG),DG<—.i‘LI:TE - %>

Dt Dt

The added mass coefficient, C,,, is, at least, a function of the voidage (cf. Zuber (1964) and
Rathman (1981)).

Drew and Lahey (1990} stated that neither the added mass force, [108], nor the transverse force,
[107], is frame-indifferent. Their sum is, however, for the case that both correction coefficients are
equal, i.e. if C, = C,m, although in a personal communication with Drew and Lahey, Acrivos
pointed out that a fundamental error had been made in the derivation and the conclusions were
therefore modified to apply only to a fluid with small vorticity.

4.4.5. History force. The history force in two-phase flows comes from the acceleration of one
phase relative to the other, and is a result of momentum being diffused through the boundary layer.
The history force is sometimes also referred to as the Basset force. The history force acting on the
particles in a suspension per unit of volume is

(1 * “G) ,0(],“(} J‘ a(l', t)dT’ [109]
4]

onh, = T
N

2
dy
where the appropriate frame-indifferent acceleration, according to Drew and Lahey (1993), is given
by

DsUs DU :
a(r, 1) = ( E’)r‘ — —1")7"> — (Us — U,) x (V x Ug). [110]

4.4.6. Other forces. As shown by Arnold er al. (1989), forces additional to those mentioned
above act on a sphere in an inviscid flow. Arnold ez a/. claim that it may be necessary to include
some of these additional forces in order to fulfil the second law of thermodynamics, although they
are usually ignored.

5. TURBULENT TWO-PHASE FLOWS

5.1. Background

For single-phase flow applications, turbulence is associated with the chaotic time-dependent
multi-scale vortices occurring for flows with Reynolds numbers above a certain limit. The standard
way of modelling turbulent single-phase flow is to derive a Reynolds decomposed and
time-averaged form of the Navier-Stokes equations, cf. Hinze (1975). The equations differ from
the laminar form by an extra stress term, the so-called Reynolds stress.

The meaning of turbulence is less established for gas—particle flows, and a short introduction
is thus given below. The turbulence in the gas phase is similar to that of single-phase flows, although
the generation and dissipation mechanisms may differ. as these are influenced by the presence of
particles. Turbulence in the particulate phase can physically be understood as the particle velocity
fluctuations caused by collisions between particles and interactions with the gas phase.

A description of turbulence models for the gas and particulate phases is presented in this section.
The section starts with the introduction of a formulation of the transport equations (continuity
and momentum), which is an alternative to the traditional formulation presented in section 3. This
alternative formulation, derived by He and Simonin (1994), gives an explicit formulation for the
interfacial momentum transfer using a Lagrangian approach, but it also introduces the need for
new closure laws.

5.2. Transport equations

An expression for the interfacial momentum transfer for the particulate phase, M;, can be
obtained from the equation of motion of a single sphere in an infinite fluid, c¢f. He and Simonin
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(1994). The equation of motion of a single sphere, moving in an unsteady non-uniform
incompressible fluid, was proposed by Gatignol (1983) and Maxey and Riley (1983) for the case
of a low particle Reynolds number, Re = pgd,|u, — ug|/us < 1. They also made the assumptions
that the gas flow characteristics vary slowly on the scale of a particle and that the size of the sphere
is small compared with the smallest length scale of the gas flow. In most gas—particle flows
characteristic for fluidization, the Reynolds numbers are in the range of 1-1000 for particles
diameters in the range of 107*-10~> m, cf. Oesterlé (1994). The equation of motion of a single sphere
can be generalized in the case of compressible flows at higher Reynolds numbers, by

nd> du, 1 nd?, . . 1 =nd, d,.
Pp_62'd‘f=§PGCDs_42|“G*“p|(UG—“p)+'2“PG_6£AAa(“G—“p)
' - d N
+2% /tpoats f 3 o —u) Ty, Ty (i)
0 t—1

where @ig and p are the undisturbed gas velocity and pressure at the particle location, respectively,
i.e. the velocity and pressure of the gas phase if the particle were not present. The terms on the
right-hand side are identified as the stationary drag, the added mass force, the history force, the
pressure gradient and the gravity force. Different correlations for the drag coefficient for a single
sphere in an infinite fluid, Cn;, and for the correction coefficients for the added mass and the history
forces, Ax and Ay, can be found in the book by Clift er al. (1978).

It can be shown that the history force is negligible for gas—particle flows, provided that
palp, < 0.002 and d, > 1 um, cf. Vojir and Michaelides (1994) and Liang and Michaelides (1992).
Liang and Michaelides also concluded that the added mass effect can be neglected because the
added mass term is proportional to the density ratio. It is generally assumed that these conclusions
can be extended to a single particle in a suspension. Equation [111] can then be expressed in the
following Eulerian form

0 ~ .
57 (0o) + V() =B (@ —u,) — Vp + pog + 1. [112]
p
where the particle relaxation time, t§,, is
1 3 PG ~
=—"— = (Cplu, — i 113
Tép 4dp Or D| P Gl [ ]

and f, represents the force exerted by other particles during collisions. The particle relaxation time
is a characteristic time for the entrainment of particles by the surrounding gas. Multiplying [112]
by X, and applying the averaging operator in combination with a Reynolds decomposition
including the pressure term, § = P + p’, an averaged form of the particulate phase momentum
equation is obtained

0
21 (%P, Up) + V- (00, U Up) = — o, VP

+ V(o T+ 0, TR) + app,8 + My, (114]

where the interfacial momentum term is given by

b= =2 Uy — (V). [115]

IR

The collisional stress term, o,%37, enters [114] from the average {(X,f.>. The relative velocity is
defined by

U = U, — Ug — {ug e, [116]

where {ug>**r is the drift velocity (cf. section 5.3). The drift velocity represents the correlation
between the gas phase fluctuating velocity and the spatial distribution of the particles. According
to Simonin (1990), this velocity represents the dispersion of the particles by the large turbulent
scales of the gas phase.
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It can be shown that this formulation is equivalent to the formulation of [47], obtained from
the traditional approach, provided that the interfacial momentum transfer, My, is given by

M, = — 222 Uy + (pVXG). [117]
<TGp> e
Neglecting the terms involving correlations of the pressure fluctuations, cf. Bel Fdhila and Simonin
(1992), the momentum equations for both phases can be rewritten in the general form

’0% (oups Ui) + Ve(oupi Up Uy )= — o, VP

+V'(ak?{A+1kTEe)+akpkg+MI:I, [118]

where the interfacial momentum transfer, M, = — Mg, is given by K(Ug — U, ) if the drift velocity
is neglected. Thus, neglecting the drift velocity, the interfacial momentum transfer Mj; equals the
generalized drag My, of [74]. A detailed discussion of the approach presented in this section is given
by Peirano (1996).

To close the momentum equations, models for the collisional and kinetic terms, (t7* + o TR,
as well as for the drift velocity are required.

5.3. Drift velocity
A model of the drift velocity, proposed by Deutsch and Simonin (1991), is expressed as

, 1 1
{ug >1\pl’p = D‘Gp<&; Vog — O(_ VOCP>, [1 19]
p

with the assumption that the particles are suspended in homogeneous isotropic turbulence of the
gas phase. The dispersion coefficient, Dg,, is modelled as 75,kc,/3, where 15, is the interaction time
between particle motion and gas phase fluctuations defined in connection with [132], and kg, is the
gas-—particle covariance, defined in connection with {138]. If the turbulence is non-isotropic, the
dispersion coefficient must be substituted with a tensor, cf. Deutsch and Simonin (1991).

More advanced models for the drift velocity can be derived, for example with the Lagrangian
history direct interaction approximation, cf. Reeks (1992, 1993), with a fluid-particle joint
probability density function (PDF) and the Langevin equation, cf. Simonin (1995), or with
asymptotic solutions, cf. Koch (1990). The model based on the fluid—particle joint PDF gives a
general transport equation for the drift velocity, whereas the model of Koch provides an algebraic
expression with restrictions on the particle Reynolds number and the Stokes number. These models
are not presented here, but an introduction to them is given by Peirano and Leckner (1997).

5.4. Turbulence models for the gas phase

A turbulence model for the gas phase of dilute suspensions was developed by Simonin and Viollet
(1990). The model is a modified k—¢ model with additional terms taking into account the interfacial
turbulent momentum transfer. This model was later applied to a bubbling fluidized bed by Balzer
et al. (1995).

The Reynolds stress tensor of the gas phase, T, defined by [45], is modelled using a standard
Boussinesq approximation

T = — pougusy™oe = —ipckal + 245(Se — 3(V-Uo)D). (120]

The dynamic turbulent viscosity of the gas phase, u§, is defined by ug = 2pckats/3, and the time
scale of the large eddies, 1, by 15 = 3C.kc/cs, cf. Simonin (1995). Furthermore, the turbulent
kinetic energy in the gas phase, kg, is modelled by the following transport equation

d t
5; (aGkaG) + V'(aoqugUG)=V'(aG s ch)
Ok

—OCGPG<U6UE;>XGPGVUG — dgpPc€c + l'IkG, [121]
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where the interaction term, IT;_, is defined as

X
Gp

I, = “j”“’ (—2ke + kap + UG Y7 Uny) [122]

and the relative velocity, U.., is defined by [116]. Finally, the differential equation for the dissipation
of turbulent kinetic energy, ¢g, is given by

% (OCGPGEG) + V'(deGGGUG)=V'<OCG % V60>

— 0GP IGC_Z (C(I<u/Gu/G>XGpGVUG + C(ZCG) + ch’ [123]
where the interaction term, I1._, is defined by
I, = C, ‘—Z .. [124]

The constants used in the ks—c model are chosen as C, = 0.09, g, = 1.0, g, = 1.3, C,, = 1.44,
C, =192 and C; = 1.2. All these constants except C; have standard, single-phase flow turbulence
values. The constant C,; is included in the gas-particle interaction term, I, of the ¢z equation
and has been determined empirically from turbulent gas—particle jet flows, cf. Elghobashi and
Abou-Arab (1983).

It is reasonable to assume that the values of C,, C,, C.,, C; should depend on the type of particles
and the type of gas flow. Squire and Eaton (1994) investigated the values of C, and C,; for
homogeneous isotropic turbulence interacting with particles by comparing the solution of the kg—¢q
model with direct numerical simulation (DNS) data. They showed that these two constants are
functions of, at least, the Stokes number, 1¢,/75, and the loading, Xg, = ®,pp/%:pc, and that their
order of magnitude can vary significantly for small Stokes numbers, i.e. for small particles affected
by large eddies. The value of the constant C, for gas—particle flows has been discussed by Cao and
Ahmadi (1995).

In the kg equation, the interaction term, Il,, represents the energy necessary to accelerate the
particles, or the energy transferred from the particles to the gas phase if the particles have high
fluctuation velocities in a region where the gas phase turbulent kinetic energy is low. The present
formulation assumes the turbulent production in the wakes behind particles to be in local
equilibrium with the viscous dissipation, i.e. the particles are assumed to be smaller than the
Kolmogorov scale in the gas phase.

When applying the kg—¢c model presented in this section, one should also be aware of the
treatment of the wall region. It has been shown experimentally, e.g. Rashidi et al. (1990), that, when
particles agglomerate in the wall region, the flow is disturbed. Rizk and Elghobashi (1989) observed
numerically that the law of the wall does not hold true even when the suspension is very dilute.
Some authors, e.g. Bolio et al. (1995), recommend the use of low Reynolds number ks—¢; models,
but this method is also questionable, as damping functions must be expressed for gas—solid
suspensions.

More research is needed in order to accurately predict the gas phase turbulence in two-phase
flows. A broader discussion on gas-phase turbulence models for gas—particle flows is given by
Peirano and Leckner (1997).

5.5. Turbulence models for the particulate phase

Turbulence models for the particulate phase available in the literature are based on the kinetic
theory of granular flow. This treatment of the particulate phase uses classical results from the
kinetic theory of dense gases, cf. Chapman and Cowling (1970), in combination with Grad’s theory,
cf. Grad (1949) and a linear theory developed by Jenkins and Richman (1985). The results of
Jenkins and Richman are valid for granular flows without an interstitial gas, but Balzer er a/. (1995)
generalized the kinetic theory of granular flow to gas—particle flows. A brief outline of this theory
is presented here. Note that, in the present section, the indices i and j are tensor indices.



48 H. ENWALD ef af.

The particulate phase is modelled as a population of identical, smooth and inelastic spheres. A
conservation equation can be formulated in terms of the single particle velocity distribution
function f'(x, ¢, 7) to yield the Maxwell-Boltzmann equation

af(l) ’1 o m af(l)
L e+ =) [125]

coll

where ¢; is the particle velocity, F, = g — (¢; — #ie:)/t&, — (85/0x:)/p, 1s the external force per unit
of mass acting on a sphere and 8/'"/0¢|. is the rate of change of the distribution function owing
to particle collisions. The ensemble-averaged value of a function y(c) is defined by

Yle)) = nlp JKZ/(C)J“"(X’ ¢, 1)de, [126]

where dc denotes an element of volume in the velocity-space surrounding the point ¢ and n, is the
number of particles per unit volume, defined by the integral of the single particle velocity
distribution function over the whole velocity domain. Multiplying [125] by y(c) and integrating
over the velocity domain, one can obtain a transport equation for {y(c)), as proposed by Chapman
and Cowling (1970)

£ ) + - ()

A )an e

where C(y) is the collisional rate of change for  and is defined by
of"
cw) = ﬁ, o

This term represents the integral, over all possible collisions, of the change of ¥ due to a binary
collision multiplied by the probability of such a collision. According to Jenkins and Richman
(1985), C(¥) can be expressed by

de. [128]

coll

W) =1¥) - 2= 0.9) — 0 (Sﬁ) [129

The source term, (1), represents the loss of the property ¥ due to inelastic collisions, and the flux
term, 6;(1), represents the transport of the property ¥ during collision. Note that the derivative
in the parenthesis of the last term is an argument to the function 6.

The rank of the tensor 8,(1/) equals one plus the rank of the argument . Thus, the rank of
6:(0y/8C)) is a tensor of rank three if s is a vector. The source and flux terms are defined by
integrals involving the pair distribution function, f®(x,, x;, ¢/, ¢, ¢), and can be calculated
analytically using a linear theory, cf. Jenkins and Richman (1985), in combination with Grad’s
theory, cf. Grad (1949). In this derivation, the pair distribution function is expressed as the product
of the single velocity distribution functions corrected by a factor g, > 1, according to the kinetic
theory of dense gases, cf. Chapman and Cowling (1970). This factor accounts for the fact that the
velocities of two colliding particles are not statistically independent. An expression for this factor
in the case of granular flows is given by Lun and Savage (1986) as go = (1 — otp/0lp max) = 2%,

A transport equation for the moment of order ¢, M, , = {(C.C;...C,) with the fluctuation
velocity C; = ¢; — {¢:), can be obtained from [127] in combination with [129] usingy = C.C; ... C,,
where m is the mass of a single particle. Noting that «,p, = #,m, the continuity and momentum
equations can be obtained using ¥ = 1 and ¢ = C,, respectively. These equations are identical to
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[46] and [114]. The collisional stress tensor a,7)» = —8;(mC;) is derived using the procedure
described in the previous paragraph to yield

N = 4 - =
%Iy = —2a,p,80(1 + &)TT — 5 %p80(1 + ) (M — T1)

4, T < -
+3 %Ppdhgo(1 + 6)\/; 28, + (V-Up)D), [130]

where M = M, = {(C,C,), e is the restitution coefficient and 7 = (C,C,)/3 is the so-called granular
temperature. The restitution coefficient represents the loss of energy during collision and varies
between zero and one. If it is equal to one, there is no energy loss during collision (elastic collision);
otherwise, energy is dissipated during collision (inelastic collision).

In [130], the second order moment of the particulate phase, M, and the granular temperature,
T, must be modelled. The second order moment is modelled using a Boussinesq approximation
and the closure model of Jenkins and Richman (1985) to yield

M =TT — 23(S, — 4{V-U)D), [131]

where the turbulent viscosity of the particulate phase can be expressed as
vo= (Xt ke + 2 o T(1 + %,g0.) / 14 e (132]
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cf. Simonin (1995) and Peirano and Leckner (1997). The time scale 75, is the interaction time
between particle motion and gas phase fluctuations. This time scale can be calculated according
to Csanady (1963) as t5(1 + C(3U%,/2ks)) "' The time scale of the large eddies, 15, is defined by
C.(3ks/2¢). The relative velocity U, is defined by [116] and the constant C; depends on the
direction in the flow, ¢f. Simonin (1995). The constants ¢. and ¢. are defined by 2(1 + ¢)(3e — 1)/5
and (1 + e)(3 — ¢)/5, respectively. The collisional stress tensor, defined by [130], can now be
rewritten as

T, = _%aptr(%ppﬁ + 2apppv;(§p — (VUi )7)’ (133]

where the collisional viscosity, v¢, is defined by

a8l + e)( v, + dpﬁ>. [134]

The effective stress tensor can now be written as

c

v =

(L N

(T + Tp) = —(Pp — &V U +2u,(S, — {(V-U)D), [135]
where the fluctuation stress tensor of the particulate phase is 7=’§“ = —p, M, the effective pressure is
Py = a0, T(1 + 2a,80(1 + ¢)) [136]

and the bulk viscosity is

. 4, T
Cp = 3 % ppdpgo(l + e)\/; [137]

The shear viscosity is given as the sum of a turbulent viscosity and collisional viscosity,
My = oppp(vy + v5). Finally, a transport equation for the granular temperature, or for the turbulent
kinetic energy of the particulate phase, k, = 37/2, is required. This is given by

D 0 oU,
avﬂpﬁ ky = o (appp(K‘ + K7) _> Z,, -
zappp (2k - ka) + appp l kp’ [138]

3 8
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where K, and K are the turbulent and collisional diffusivity coefficients, respectively, and

Y, denotes the effective stress tensor, —a,(Zfr + T%). The time scale ¢ = (d,/24go%,)\/7/T

is the particle-particle collision time, i.e. the time between two consecutive binary collisions for

a given particle. The gas—particle covariance, kg, is defined as {Cué; >, where uc; = ug — {uc: )*".
The turbulent diffusivity is modelled as

K= (2 kg, 701+ myg00) ) (2 + %), [139]
516, /

515, Ty

where @. = 3(1 + ¢)(2e — 1)/5 and & = (1 + €)(49 — 33e)/100. The collisional diffusivity, K, is

defined by
K= a,g0(1 + e)@ K+ gdpﬁ) [140]

To solve [138], a semi-empirical equation for the gas—particle covariance was suggested by Simonin
(1995)

D 0 VG, Ok v o\ OUy
%pPp F]; kap = ox. ( vPp O'_TR a—sp> — op P UGilhy; ) 5):
X; o OXj j
"ot aU i
— 0t pp UG Up ) axG — opPpeap + Hap, [141]
j

where the dissipation rate, cg,, is given by g, = kg,/76,, and the gas-particle turbulent viscosity
is v, = kgpT5,/3. The interaction term, Ilg,, is given by

HGP - —anTGpp ((1 + XGp)ka - ZkG - 2XGPkP)9 [142]
P

where Xg, = o,0,/0c PG

The model of Jenkins and Richman (1985) as well as the generalized model of Simonin (1995)
are derived for certain restricted conditions. The primary restrictions are granular flows with small
spatial gradients for the mean fields (velocity and granular temperature), a low level of anisotropy
and nearly elastic particles (1 — e must be small) in translational motion. In reality, the particle
flow contains rough, rotating particles, and an accurate collision model should account for these
effects, cf. Foerster ez al. (1994). A formulation of the kinetic theory of granular flow for slightly
elastic, slightly rough spheres has been given by Lun (1991), but it has not been generalized to
granular flow taking into account the interstitial gas. Furthermore, there is no general formulation
of the transverse forces acting on a single particle in a suspension. The kinetic theory of granular
flow presented in this section is fairly free from empirical constants. The only constants that appear
directly in the model are the restitution coefficient, ¢, and the radial distribution function, g,
although gas phase turbulence constants affect the model indirectly, through the correlation, kg,
between the fluctuating motion of the gas and particle phases. As far as the restitution coeflicient
is concerned, its value affects the results significantly in numerical simulations of dense suspensions,
Balzer et al. (1995), while the influence is small for dilute suspensions, Bolio e? al. (1995). For dense
suspensions, a decrease of the restitution coefficient causes the granular temperature to decrease.
This in turn causes a decrease of the viscosity and diffusion, resulting in larger gradients and more
bubbles in the calculated results. However, the restitution coefficient has a physical meaning and
has a constant value for a given material. Measured restitution coefficients for different types of
materials are given by Foerster et al. (1994).

The kinetic theory presented in this section takes the interstitial gas into account and is thus a
generalization of the results of Jenkins and Richman. For a dilute suspension, i.e. where ;> 1,
the particle mean free path is limited by the aerodynamic forces, cf. Boelle et al. (1995). Some
kinetic theory models omit the aerodynamic forces, cf. section 6.2. A direct consequence of this
is an overprediction of the particle viscosity in dilute regions. This matter is also discussed by
Peirano et al. (1997).
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A detailed derivation of the kinetic theory of granular flow, outlined briefly above, is given by
Peirano and Leckner (1997).

5.6. Concluding remarks on turbulence

As pointed out by Simonin (1995), for dilute suspensions, the models presented above lead to
an overestimation of the normal particle fluctuation stress components perpendicular to the mean
flow. For such cases, separate transport equations for the particle second order moment might be
needed. However, in dense suspensions, e.g. bubbling fluidized beds, where the collisional
mechanism is dominant, the model presented in this section seems to give satisfactory results. In
addition, as pointed out by Boelle et al. (1994), their ks—€c model was originally developed for
dilute suspensions. In the case of dense suspensions, several studies have shown that the correlations
related to the fluctuations of the gas phase velocity are nearly negligible. According to Balzer et al.
(1995), turbulent transport in the gas phase has a relatively great effect on the mean flow field in
dilute gas—particle flows, for example in the freeboard or inside the gas bubbles of a fluidized bed.
In the dense regions surrounding the bubbles, however, the inertia of the particles damps out the
high frequency turbulent scales in the gas phase. This has been discussed by several authors, e.g.
Rowe (1971) and Kuipiers et al. (1992). The turbulence of the particulate phase in the dense regions
is generated mainly by particle collisions, whereas the main generation mechanism in the dilute
regions is interaction with the turbulent eddies of the gas phase. This implies that the application
of a two-fluid model to a bubbling fluidized bed may require a model simultaneously taking into
account the turbulent transport, drag and particle—particle collisions.

6. APPLICATIONS TO FLUIDIZATION

A number of publications on simulation of the hydrodynamics of bubbling and circulating
fluidized beds can be found in the literature. Tables 6 and 7, respectively, summarize work on
bubbling and circulating fluidization simulations. Investigations of pneumatic conveying are not
considered in this study.

The tables show details about the model itself, describe some computational aspects, the name
of the code and validation method, and give some general comments. The model column describes
the treatment of the phasic stress tensors, the particle pressure and drag function, and states
whether the simulation was two or three-dimensional. The computations column summarizes the
mean particle diameter, particle density, computational mesh size, time step and simulation time.
In some cases, simulation time was not given in the publications, and the values presented in the
tables were then inferred from the latest point in time from which results were presented. In the
comments column, it is stated whether a symmetry assumption is made on the flow field and, for
the Illinois Institute of Technology/Argonne National Laboratory (IIT/ANL) group, whether
model A or B is used, cf. section 6.1. The remaining groups use model A.

The codes used and the specific cases simulated by the different groups vary considerably, which
makes it difficult to compare the different methods. However, an attempt has been made to outline
the main features of each groups’ work, bearing in mind that there may be other important aspects
that affect the solution, such as boundary conditions, initial conditions and numerical dissipation.

6.1. Bubbling fluidized beds

The material found on bubbling fluidization has essentially been produced by seven different
research groups over the past 15 years.

The members of the IIT/ANL group are pioneers in the field and have published the greatest
amount of articles, using a code which is based on the K-FIX code, originally developed by Rivard
and Torrey (1977). The earlier publications by the IIT/ANL group are based on inviscid laminar
models of both phases using a 2D model. Later work takes into account the turbulence in the
particulate phase using a kinetic theory model that does not include the aerodynamic forces, and
3D calculations are also made. The IIT/ANL group introduces two different treatments of the gas
pressure gradient in the momentum equations. In model A, the pressure gradient is included in
each of the phasic momentum equations. This is the model presented in section 4.3.1, and is the
conventional way of treating the gas pressure gradient. In model B, the whole gas pressure gradient
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is placed in the gas phase and the expression for the drag function is modified accordingly, cf.
Bouillard et al. (1989). The IIT/ANL group’s motivation for using model B is that it makes the
set of equations well-posed. However, this has been shown only in the form of a one-dimensional,
initial-value problem Lyckowski er al. (1978). To our knowledge, nobody has yet proven the
well-posedness for a multi-dimensional initial-boundary value problem, and consequently most
researchers today prefer model A.

In the code by the EG&G W. A. S. C. Inc./Department of Energy Morgantown (EG&G/DOE)
group, the particle pressure is set to zero in all parts of the bed except for the very dense regions.
In these regions, the voidage is fixed to a value that corresponds to the maximum particle packing,
and the particle pressure is calculated to match this value in the particle momentum equation. This
approach assumes an interpretation of the particle pressure as a repulsive force between the
particles in the dense regions, similar to that of the modulus of elasticity concept, cf. {63]. The
authors use their own drag correlation, cf. [92].

The Twente University (TU) group adopted a modelling approach similar to that of the
IIT/ANL group and has contributed to an increased knowledge of heat transfer modelling in
bubbling fluidized beds.

The New York University (NYU) group coupled an inviscid hydrodynamic model with different
tube erosion models. Erosion rates were calculated on tube banks using a Cartesian mesh and
blocked cells to approximate circular tube geometries.

The Rheinisch-Westfilische Technische Hochschule (RWTH) group developed the FLUENT
code in cooperation with FLUENT Europe to simulate gas—particle flows and applied the code
to both bubbling and circulating fluidization. The model is based on the kinetic theory of granular
flow. The contribution of the group is mainly a comparison of different stress tensor models and
comparisons between algebraic and differential models for the granular temperature. The group
has also tested different drag models and has chosen to use the correlation of Syamlal and O’Brien,
cf. [92] for bubbling fluidized bed simulations.

The most complete analysis of the two-fluid model and constitutive equations applied to
gas—particle fluidization has been made by the Electricité de France (EDF) group. Their kinetic
theory model takes into account the influence of the gas phase, which makes the model applicable
for all particle concentrations. A complete turbulence model for both phases is used, i.e. four
coupled transport equations are solved, cf. section 5. Some work has been done on
three-dimensional simulations.

A number of the above workers assume a symmetrical flow field in the bed and solve only for
half the bed width in order to save computational time, cf. table 6. An experimental validation
of such results requires a well-defined experiment in which a single bubble rises through the bed
without any significant disturbances. In reality, fluidization is a chaotic process with strong bubble
interaction and a highly asymmetrical flow pattern. Thus, in order to compare results of the
numerical simulations with the experimental results, statistical averages of the different flow
parameters must be calculated over quite a significant period of time, without any symmetry
assumptions being made. This approach has been used by the Chalmers Tekniska Hogskola (CTH)
group, cf. Enwald er al. (1997), using a time-averaging period of 32 s. Two models have been used
in this work. The first model is defined by the phasic continuity and momentum equations {46-47],
with Newtonian phasic stress models [49-51], where the viscosity for each phase is constant. The
particle—particle interaction force model is expressed with [62—63] and [65], and the drag function
model suggested by Gibilaro [106], is introduced in the momentum equation as described in
section 4.4. The second model is also defined by [46—47] with the drag function model of Gibilaro
[106]. However, the Newtonian phasic stress model [49-51], is used only for the gas phase while,
for the particulate phase, the kinetic theory of granular flow is introduced. For the particulate
phase, the stress tensor is given by [135] and the granular temperature is computed with [138] where
gas phase turbulence is neglected. A time sequence of bubbles rising up through the bed, calculated
from the two-dimensional form of the constant viscosity model is presented in figure 12.
Instantaneous gas and particle velocities are shown in figure 13. As shown in the figures, the flow
is stochastic, with strong bubble interactions including both coalescence and split-up. Experimental
measurements of visible bubble flow parameters and the through-flow velocity of gas through the
bubbles were carried out in a freely bubbling pressurized model bed having the same geometry as
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that used in the numerical simulations. Further details on the comparisons between the
experimental and numerical results are reported by Enwald and Almstedt (1997).

Many of the published works have used a constant viscosity for the particulate phase. This means
that the influence of voidage on the viscosity is not taken into account. One simple way of doing
this would be to couple a voidage-dependent mixture viscosity model, e.g. one of the models given
by [58]-[61}], to the particle viscosity, using a relation of the type suggested in [52]. However, the
physical justification for [52] is questionable and, to our knowledge, this approach has not been
tried by any of the groups. In the granular flow theory, the influence of voidage on the particulate
phase viscosity is taken into account by the use of the effective stress tensor. This is a physically
more sound approach, although the models contain a number of empirical constants that need to
be determined experimentally. Thus, the proof of the pudding is in the eating, and any model used
should be carefully verified versus experiments. It should also be noted in this connection that the
majority of the simulations thus far has been made two-dimensionally, something that may affect
the numerical results to be compared with the three-dimensional reality.

6.2. Circulating fluidized beds (CFB)

There are two major applications of CFB technology: circulating fluidized beds for catalytic
cracking and circulating fluidized bed combustors. In this section, we have selected papers on
circulating fluidized bed combustor simulations of real boilers and pilot scale plants.

The IIT/ANL group initiated two-dimensional computations of circulating fluidized beds using
constant gas and particle phase viscosities. This was later improved by using kinetic theory of
granular flow and large eddy techniques (LES) for the gas phase. The kinetic theory as used by
the LIT/ANL group does not take aerodynamic forces into account, however, and may therefore
lead to an overprediction of the particle phase viscosity for dilute suspensions, as discussed in
section 5.5. Furthermore, the use of the LES technique in a 2D model is questionable, as large
scale eddies are always three-dimensional.

0.5}

\ :G%j;: g 0_0)ﬁ W0 -%;}
0.0 0.1 02 03 0.0 0.1 02 03

Figure 13. Instantaneous voidage distribution, gas velocity field (left) and particle velocity field (right)
after 4s.
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The Telemark Technological R&D Centre/Telemark Institute of Technology (Tel-Tek/HiT-TF)
group made the first simulation on two-dimensional multi-phase (three particle sizes—four phases)
fluidization in a CFB. Their model is based on the model by Jenkins and Mancini (1987), which
is a generalization of the kinetic theory of granular flow presented in section 5.5. The simulations
seem to predict segregation effects fairly well. The use of LES for the gas phase is questionable
for the same reason as is given for the IIT/ANL group.

The research group at RWTH has performed two-dimensional simulations using the kinetic
theory of granular flow without taking into account the turbulence in the gas phase. A drag
function model with a cluster correction by O’Brien and Syamlal is used, cf. [92]-{94] and [101].
It is not obvious why the clustering effect should be included in the drag correlation, as this effect
is already accounted for by the transport equations.

The EDF group has made three-dimensional simulations of industrial units using the set of
equations presenied in section 5. Their validation of the time-averaged vertical pressure profile over
a period of 30 s shows that the dense region at the bottom of the combustion chamber is not
well-predicted. Generally, the model appears to predict the mean flow field fairly well.

Most of the published work on CFB simulations included here applies the kinetic theory of
granular flow without taking into account the influence of the gas phase. As discussed above, this
approximation is rather crude in the dilute parts of the suspension and leads to an erroneous value
of the particulate phase viscosity. In addition, most groups do not account for the turbulent
coupling between the phases, i.e. that the particles are dispersed by gas phase turbulence and also
modulate the gas phase turbulence. This effect is included in the model used by the EDF group,
cf. the set of equations presented in section 5. The effect of this on the solutions is not clear and,
again, the different models must be validated versus experiments.

7. CONCLUSIONS

This report describes the steps needed to derive a closed two-fluid model applicable to
non-reacting gas-particle flows. Two types of models are described. The first type, derived by a
traditional approach, does not include any turbulence models. In the second type, turbulence is
modelled for both the gas and particulate phases. A full derivation is presented for the model
obtained with the traditional approach, whereas only a brief overview is given for the turbulent
two-fluid model.

The first set of balance equations described in the present report, i.e. the local instantaneous
equations and corresponding jump conditions, completely describes the dynamics of both phases.
As mentioned in section 1.5, these equations could in theory be solved either by direct simulation
or by using a Lagrangian description for the particulate phase. However, with today’s computer
capacity, both approaches would result in completely unrealistic simulation times if the number
of particles in the system is large. Thus, an averaged, Eulerian, approach is often required, which,
however, necessitates the inclusion of additional expressions to close the set of equations.

To close the averaged transport equations, constitutive laws and transfer laws are needed. An
important area of future work is to improve the constitutive laws, e.g. the shear stress models for
the respective phases. Transfer laws are needed to model the interfacial relations, of which only
interfacial momentum is treated in this report. The interfacial momentum transfer was rewritten
into a generalized drag, M|, which is contributed to by the stationary drag, added mass, transverse,
history and other forces. For suspensions with a small gas-to-particle density ratio, such as
gas-fluidized beds, the only one of these forces included in the two-fluid models is normally the
stationary drag, while the remaining forces are neglected. The correlations given in this report for
the drag function, K, used when calculating the stationary drag force should be employed with
caution, as most of them are derived from homogeneous fluidization experiments, i.e. from
liquid—particle fluidized beds, and not from heterogeneous fluidization. Furthermore, if a stringent
derivation of an Eulerian turbulent two-phase flow model is made, a drift velocity is introduced
in the expression for the interfacial drag term, cf. [116] and [117]. This velocity represents the
dispersion of particles by large-scale turbulent eddies and is likely to be important for cases with
small particles, although many groups use turbulence models without including the drift velocity.
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The two-fluid model equations must be solved together with appropriate boundary conditions.
Problems related to the boundary conditions are, for instance, how to model the particle motion at
the walls and how to model the air distributor plate, for both phases. The latter problem depends
on the physical geometry of the distributor plate. Boundary conditions have not been discussed in
this paper.

Anarea that needs improvement is the mathematical theory of well-posedness for systems of partial
differential equations describing gas—particle flows. The well-posedness of such problems has been
studied by e.g. Lyczkowski er al. (1982) for a one-dimensional inviscid model formulated as an
initial-value problem, using Lax’s theorem (1958). It was found that this inviscid, one-dimensional
initial-value problem can be well-posed under some conditions, which does not, however, prove the
well-posedness in several dimensions or when the effects of the boundary conditions are included
(initial-boundary value problem). With the present level of knowledge, there is no way to determine
whether the multidimensional two-fluid model is well-posed as an initial-boundary value problem.

The influence of turbulence appears in the equations in the fluctuation correlations introduced by
the Reynolds decomposition. For fluidization applications in which both the density difference
between the phases and the particle concentration are high, i.e. for bubbling gas-fluidized beds, it
seems that the inertia of the particles damps out the turbulence in the gas phase. This has been
discussed by several authors, e.g. Rowe (1971) and Kuipiers et al. (1992a). Thus, in the dense part
of the bed, ignoring the gas phase turbulence may be a valid approximation, whereas in the dilute
regions, i.e. in the bubbles and the freeboard, the turbulence may well be of greater importance.

If turbulence is included, the gas-phase turbulence is normally modelled using a modified k—¢
model. This model includes a number of case-dependent empirical constants. Because of a lack of
experimental data, these constants are usually taken from the standard one-phase k—¢ model. As this
model can give significant errors even for a number of single phase flows, its validity in two-phase
flow turbulence is, at least, questionable.

The simplest way to implement turbulence in the particulate phase is to include a constant, or
voidage-dependent, particle phase viscosity, using a Newtonian stress—strain relation. In the
literature, the only voidage dependent viscosity models available are for the mixture viscosity. Thus,
if a voidage-dependent viscosity model is to be used, the mixture viscosity must be related to the
particle phase viscosity through some physically reasonable assumption. Alternatively, the particle
phase turbulence can be modelled with the kinetic theory of granular flow, cf. section 5.5. This theory
is sometimes used without taking into account the effects of the interstitial gas on the particulate
phase. However, this effect may be important for dilute regions of the flow field.

A critical discussion of different approaches to the modelling of bubbling and circulating fluidized
beds is given in section 6. [t can be noted that few of the models have as yet been satisfactorily verified
versus experimental results. Both the simpler and the more advanced models contain a number of
assumptions, and it remains to be investigated which method is the most reliable for fluidized bed
applications.
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APPENDIX A

Gauss’ Theorem
Scalar function

JVdezjfndA. [A1]
1 A
Vector function
~[Vde:J‘fndA. [A2]
Vv A
Tensor function
JV~7dV=f7-ndA. [A3]
v A

Leibniz’s Theorem

o | faodr= J g—f: AV + | flum)dd. [A4]
Vi) Viln A
APPENDIX B

Continuity Equation

Introducing the Reynolds-decomposed velocity vector of phase k into the averaged continuity
equation [36], results in the following equation

5 (Xip) + V-(Xopy (Ui > 0. [B1]
term 1 term 2

The transient term (term 1) is simplified using the phasic average of the density
term 1 = % (o pi). [B2]

In term 2, the mass-weighted average of the velocity vector is by definition constant on the scale
of averaging. Utilizing this fact and the definitions given in section 3.4.2, the term can be rearranged
in the following way

term 2 = V- ({Xp DU+ {Xepeiic D)

=V-<ockp,f(k(Uk+<uf(>x“"k)> = V'(O(kpf(\,kUk). [B3]

=0

Thus, the Reynolds-decomposed and averaged continuity equations becomes

L (oup) + V- (upi U =0. [B4]
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Momentum Equation

The Reynolds-decomposed velocity vector of phase & is first introduced into the ensemble-averaged
momentum equation {37]

£ (CXpe U+ 0)3) + V- (Kapu(Us ) (Us + w)))

“ ~ _J u ~ J
term 1 term 2
=V (X TO)—(Xipeg) = — (T VX (B3]
L.__V_J H—J
term 3 term 4

Starting with term 1, the expression inside the outer brackets is identical to that in the convective
term of the continuity equation (term 2 in the continuity equation). In a way similar to the
continuity equation, term 1 can thus be rewritten as

term 1 = 50; (aupi* Uy). [B6]

Term 2 is reformulated into the Reynolds-averaged form as follows

term 2 = V(<X/\pAUAUk>+<2kaAUkUI/<> + <kakull<uli'>)
:V<<X1\pk >UAUA+2<X/\,D/. >Uk<ull< >X""'A — O ch> [B7]
L_Y_J
=0

:V'((X/‘.p{kU/\-Uk_akT—‘ll\'{e)'

Applying the phasic average to the stress and gravity terms, terms 3 and 4, respectively, the
Reynolds-decomposed and averaged momentum equation is obtained as

Zf}(ockpf* Uo) + Ve (api UrU) = Ve (ou (TE+ TE)) + oupg + M, (B8]

where My = — <7="k'VXk> is the interfacial momentum transfer term.



